Устройство и принцип работы привода сцепления

Любой механизм должен иметь органы воздействия, а также управление. Не является в этом плане исключением сцепление автомобиля. Предназначенное для кратковременного разъединения трансмиссии и двигателя, оно является неотъемлемой частью любого транспортного средства, служит для обеспечения возможности управления машиной.

Для передачи воздействия от водителя на этот механизм на легковых автомобилях обычно используется гидравлический привод; одной из ответственных деталей подобного устройства является главный цилиндр сцепления.

Об устройстве гидравлического привода

Чтобы лучше понимать, о чем будет идти речь, надо хотя бы схематично представить конструкцию такого привода. Его назначение, устройство, роль в составе автомобиля оставим в стороне, в данном случае важен сам гидравлический привод.

Его реализацию, в качестве примера, как один из возможных вариантов, можно увидеть на приведенном ниже рисунке. Этого достаточно для понимания устройства и работы привода сцепления, а также понимания его роли и значения в составе автомобиля.

Из деталей привода на рисунке необходимо отметить такие узлы:

  1. бачок для заливки тормозной жидкости (1), которая используется в качестве наполнителя гидравлического привода;
  2. главный цилиндр сцепления (2);
  3. гидротрубки (3,4,5) и шланг (7);
  4. рабочий цилиндр сцепления (8);
  5. педаль (6) и возвратная пружина (9).

Устройство механического привода

Как уже было сказано, механический привод имеет предельно простое устройство и состоит из следующих конструктивных элементов:

  • педаль привода сцепления;
  • трос;
  • устройство регулирования;
  • рычажный привод;
  • выжимной подшипник.

Основным элементом механического привода является гибкий трос, заключенный в оболочку. Педаль привода расположена в салоне автомобиля и посредством гибкого троса связана с рычажным устройством (вилка сцепления). В соединении троса и вилки сцепления имеется регулировочное устройство, предназначенное для выставления свободного хода педали. Работа механического привода предельно проста: водитель воздействуя на педаль, приводит в движение рычажное устройство, которое в свою очередь перемещает по направляющей выжимной подшипник, тем самым выключая сцепление.

Как работает гидравлический привод

Не касаясь устройства отдельных узлов данного механизма, к этому можно будет вернуться немного позже, вполне достаточно упрощенно ознакомиться с его работой. Будем считать, что в привод залито необходимое количество тормозной жидкости, он исправен и полностью работоспособен.

При нажатии на педаль (6) усилие через шток передается в главный цилиндр привода сцепления (2). Он воспринимает это усилие, а затем через систему трубок и шлангов передает его на рабочий цилиндр сцепления. Последний через вилку сцепления и выжимной подшипник отключает трансмиссию от двигателя.

Привод выключения сцепления гидравлический

На автомобиле применяется гидравлический привод выключения сцепления с педалью подвесной конструкции (ось качания педали расположена выше ее площадки). Такой тип привода получает все большее распространение на современных легковых автомобилях. Его преимущества по сравнению с механическим приводом сводятся в основном к следующему:

  1. Сцепление включается более плавно, что уменьшает динамические нагрузки в трансмиссии, особенно при трогании автомобиля с места, и повышает комфортабельность езды.
  2. Значительно улучшается герметизация пассажирского помещения кузова от проникновения в него пыли, грязи и влаги, поскольку (при педали тормоза также «подвесной» конструкции) в наклонном полу кузова отсутствуют люки для прохода рычагов педалей сцепления и тормоза.
  3. Не забрасываются грязью и хорошо защищены от пыли главные цилиндры гидроприводов выключения сцепления и ножного тормоза, расположенные достаточно высоко па идете кузова, и элементы механической части приводов, что облегчает техническое обслуживание этих узлов и повышает их долговечность.
  4. Нет точек смазки в приводе сцепления, что упрощает обслуживание автомобиля.
  5. Появляются значительные компоновочные возможности, так как «подвесные» педали сцепления и тормоза вместе с их главными цилиндрами можно разместить на щите передка кузова в соответствии с особенностями компоновки автомобиля.

Как устроен гидропривод

Устройство главного цилиндра сцепления может быть конструктивно выполнено различным способом, но в целом по принципу действия совпадает во всех вариантах. Для примера на рисунке ниже приведен главный цилиндр сцепления в разрезе.

Среди основных деталей можно выделить

  • (2) — толкатель, связывающий механизм с педалью;
  • (3) главный цилиндр;
  • (4) поршень;
  • пробки и возвратная пружина.

Из рисунка видно, что цилиндр сцепления разделен на две части перегородкой. Верхняя половина служит для заправки гидропривода жидкостью, поступающей в цилиндр из бачка (5), и хранения ее необходимого рабочего запаса. Если все настроено и отрегулировано правильно, то ее уровень должен составлять три четверти от рабочего объема.

Нижняя часть служит в качестве рабочей зоны. В исходном состоянии поршень (4) пружиной поджат к разделительной стенке, между толкателем и поршнем образуется зазор А, и через него жидкость заполняет рабочую зону.

При нажатии на педаль толкатель, перемещаясь, перекрывает зазор А, перетекание из верхней части в нижнюю прекращается, начинает перемещаться поршень, передавая через систему трубок и шлангов на рабочий цилиндр усилие от ноги водителя.

Благодаря различию диаметров поршня и выходного отверстия его значение увеличивается, этого становится достаточно для срабатывания сцепления. Такая конструкция привода позволяет при легком нажатии на педаль обеспечивать требуемое усилие для срабатывания всего механизма.

При отпускании педали поршень под воздействием пружины и существующего в системе давления возвращается в исходное положение, туда же перемещается толкатель, благодаря чему восстанавливается свободное проникновение жидкости между двумя частями цилиндра.

Устройство и принцип работы электронного привода сцепления

В последнее время многие компании предлагают совершенно новые конструкции приводов сцепления, которые находят применение в перспективных автомобилях, в том числе гибридных и электрических. Отдельного внимания заслуживает привод «Electronic Clutch System» от компании Bosch.

Electronic Clutch System (дословно — «Электронная система сцепления») — система, которая позволяет на автомобилях с механической коробкой передач реализовать некоторые функции автоматических коробок. В частности, при движении на первой передаче по городским пробкам управление автомобилем производится только педалями газа и тормоза (сцепление выключается при отпускании акселератора), педаль сцепления становится нужной только при переключении на вторую и более высокие передачи.

Электронный привод сцепления объединяет электронный блок педали сцепления, ряд датчиков (датчик положения рычага переключения скоростей, положения педали газа и другие), электронный блок управления и электрогидравлический привод вилки выключения сцепления. Также электронное сцепление связано с электронной системой управления двигателем, благодаря чему при переключении скоростей происходит автоматическое изменение оборотов двигателя.

Электронное сцепление дает возможность реализовать несколько полезных функций, которые снижают утомляемость водителя и уменьшают расход топлива. Как заявляет производитель, экономия топлива может достичь 10% и более, что при современных ценах на бензин даст ощутимый эффект.

На сегодняшний день система Electronic Clutch System находится на стадии тестирования, поэтому применяется ограниченно, но в будущем она может получить самое широкое распространение.

Гидравлический привод (рис. 2) состоит из педали 6 сцепления с оттяжной пружиной, главного цилиндра 3, соединенного трубкой 2 с бачком 1, рабочего цилиндра, трубопроводов и шлангов для подачи рабочей жидкости от главного цилиндра к рабочему цилиндру и вилки выключения сцепления с пружиной 11.

Привод сцепления служит для дистанционного управления сцеплением. Наибольшее распространение получили механический и гидравлический приводы.

Механический привод сцепления

Механический привод сцепления прост по конструкции и надежен в эксплуатации, но обладает меньшим КПД по сравнению с гидравлическим приводом, поскольку в шарнирных сочленениях составляющих привод тяг, рычагов, в оболочках гибких валов теряется много энергии из-за сил трения. Поэтому такой тип привода применяется, как правило, если сцепление находится вблизи от органов управления (педали сцепления).

Существуют тросовый и рычажный механические приводы сцепления.

При нажатии на педаль сцепления трос перемещается внутри оболочки и перемещает рычаг вилки выключения сцепления, которая в дальнейшем воздействует на муфту выключения сцепления.

Гидравлический привод сцепления

Гидравлический привод выключения сцепления позволяет передавать усилие на большое расстояние с высоким КПД, снизить усилие на педали сцепления в результате наличия передаточного числа гидравлической части привода и способствует плавному включению сцепления из-за сопротивления перетеканию жидкости в элементах гидропривода. Он удобен для применения на легковых автомобилях, а также на грузовых автомобилях с опрокидывающейся кабиной.

Гидравлический привод (рис. 2) состоит из педали 6 сцепления с оттяжной пружиной, главного цилиндра 3, соединенного трубкой 2 с бачком 1, рабочего цилиндра, трубопроводов и шлангов для подачи рабочей жидкости от главного цилиндра к рабочему цилиндру и вилки выключения сцепления с пружиной 11.

При нажатии на педаль сцепления поршень 16 главного цилиндра перемещается влево и после перекрытия компенсационного отверстия 20 вытесняет жидкость через нагнетательный клапан 16 и трубопроводы в рабочий цилиндр. Поршень 14 рабочего цилиндра перемещает толкатель 9, который воздействует на вилку выключения сцепления 7.

При отпускании педали жидкость перетекает из рабочего цилиндра в главный цилиндр через обратный клапан 19 под действием усилия нажимных пружин сцепления и оттяжной пружины вилки 11. Обратный клапан устанавливается для создания небольшого избыточного давления в трубопроводах, которое исключает попадание воздуха в привод в результате возможного повышения давления окружающей среды при выключении сцепления и ускоряет время срабатывания привода при выключении сцепления.

При резком отпускании педали сцепления магистраль пополняется жидкостью через перепускное отверстие 21 и отверстие в поршне 18 главного цилиндра, прикрытое манжетой 19, что также не дает возможности снижения давления в приводе. Избыток жидкости перетекает в бачок 1 через компенсационное отверстие 20, что позволяет возвратить детали привода в исходное положение.

Привод сцепления на автомобиле предназначен для краткосрочного отсоединения коленчатого вала двигателя от коробки передач, а также для их совмещения, которые необходимы для переключения передач, а также, для того, чтобы автомобиль мог тронуться с места и начать движение.

Привод сцепления на автомобиле предназначен для краткосрочного отсоединения коленчатого вала двигателя от коробки передач, а также для их совмещения, которые необходимы для переключения передач, а также, для того, чтобы автомобиль мог тронуться с места и начать движение.

На сегодняшний день в автомобилях применяются следующие виды приводов сцепления:

  • привод сцепления механический;
  • гидравлический привод сцепления;
  • электрогидравлический привод.

Последний из вышеназванных приводов сцепления в отличие от первых двух применяется в автомобилях крайне редко и используется в роботизированных коробках передач. Поэтому более конкретно на нем останавливаться не будем, и давайте рассмотрим первые два.

Привод сцепления механический

Данный привод, как правило, применяется в небольших легковых автомобилях. Отличается он от других приводов сцепления своей невысокой стоимостью и простотой конструкции, которая состоит из:

  • педали сцепления;
  • троса привода сцепления;
  • рычажной передаче;
  • механизма отвечающего за регулирования свободного хода педали сцепления.

Схема механического привода сцепления: 1 — контргайка; 2 — регулировочная гайка; 3 — нижний наконечник троса; 4 — защитный чехол троса; 5 — кронштейн крепления троса; 6 — нижний наконечник оболочки троса; 7 — оболочка троса; 8 — поводок троса; 9 — уплотнитель; 10 — верхний наконечник оболочки троса; 11 — верхний наконечник троса; 12 — кронштейн педали сцепления; 13 — пружина педали сцепления; 14 — педаль сцепления; 15 — упорная пластина.

В его конструкции основным элементом является трос, который соединяет между собой «вилку» выключения и педаль сцепления. При нажатии водителем на педаль сцепления через трос, который в свою очередь заключен в специальную оболочку, передается соответствующее усилие на рычажную передачу. В свою очередь рычажная передача обеспечивает выключения сцепления путем перемещения вилки сцепления.

Привод сцепления механический также оснащен механизмом, отвечающим за регулировку свободного хода педали сцепления. Данный механизм включает в себя на конце троса регулировочную гайку. Необходимость данного механизма в первую очередь обусловлена постепенным, вследствие износа, изменением положения педали сцепления.

Гидравлический привод сцепления

Данный привод по своей конструкции напоминает гидравлический привод тормозной системы автомобиля. В нем также в качестве «рабочей» жидкости используется тормозная жидкость, а сам привод состоит из:

  • педали сцепления;
  • главного и рабочего цилиндров;
  • бачка с «рабочей» жидкостью;
  • соединительных трубопроводов.

Главный и рабочий цилиндры выполнены в качестве поршня с толкателем, которые в свою очередь размещены в корпусе. При нажатии водителем на педаль сцепления поршень главного цилиндра начинает двигаться с помощью толкателя вследствие чего «рабочая» жидкость отсекается от бачка. Далее «рабочая» жидкость поступает в рабочий цилиндр по соединенному трубопроводу.

Именно под воздействием «рабочей» жидкости и происходит движение толкателя с поршнем. Толкатель в свою очередь оказывает воздействие на «вилку» сцепления и тем самым обеспечивает выключения сцепления.

Для того чтобы удалить из привода воздух, на рабочем и главном цилиндрах установлены специальные штуцеры.

Работа сцепления с гидравлическим приводом — видео:

Также на некоторых автомобилях применяется вакуумный либо пневматический усилитель привода. Его установка облегчает управление автомобилем.

В автомобилях с гидравлическим приводом сцепления передача усилия на вилку выключения сцепления осуществляется специальным механизмом — рабочим цилиндром. Все о рабочих цилиндрах сцепления, их типах, конструкции и принципе работы, а также о правильном ремонте, выборе и замене — читайте в этой статье.

Характерные неисправности

Несмотря на свою простоту, главный цилиндр также может послужить источником серьезных неприятностей. Наиболее распространенными причинами дефекта могут быть:

  • недостаток рабочей жидкости;
  • попадание в систему гидропривода воздуха.

В первом случае нужно просто проверить в бачке уровень жидкости, при ее недостаточном количестве надо долить до установленного значения. Для исключения подобного необходимо периодически контролировать положение жидкости в бачке при проведении регламентных работ, а также техническом обслуживании.

Причинами попадания воздуха в главный и рабочий цилиндры, приводящими к отказу сцепления, могут быть трещины в шлангах, износ деталей или подтекание системы в местах соединения ее различных участков.

С целью восстановления работоспособности системы необходимо устранить такие источники подтекания и попадания воздуха в магистраль, главный и рабочий цилиндры, а также прокачать всю систему для удаления из нее уже попавшего воздуха. Эту процедуру можно выполнить вполне самостоятельно, не прибегая к помощи автомастерской. Из-за конструктивных особенностей, которыми обладает главный цилиндр у разных автомобилей, описать правильно эту процедуру затруднительно, хотя вкратце можно отметить, что проводится она нажатием на педаль сцепления. При этом на специальный штуцер или клапан надевается дополнительный шланг, через него рабочая жидкость поступает в отдельную емкость с тормозной жидкостью.

Ее уровень в бачке, с которым связан главный цилиндр, не должна опускаться при этом ниже установленного уровня, иначе вновь возможно попадание воздуха. Вместе с жидкостью воздух уходит из системы. Когда его пузырьки прекратят выделяться, можно считать, что система прокачана, и воздух из нее удален. После этого все приводится в первоначальное состояние, проводится необходимая регулировка узлов и механизмов (выставляются зазоры, свободный ход).

Главный цилиндр предназначен для передачи усилия с педали и преобразования его значения до величины, которой должно быть достаточно для перемещения вилки сцепления. При этом сработает механизм сцепления и связь между двигателем и колесами автомобиля будет разорвана.

Нюансы эксплуатации сцепления

Зачастую водители склонны связывать неравномерность и рывки при движении автомобиля с неисправностями сцепления. Эта логика в большинстве случаев ошибочна.

Например, автомобиль при переключении передач с первой на вторую, резко сбрасывает обороты. Здесь виновато не само сцепление, а датчик положения педали сцепления. Находится он за самой педалью сцепления. Неисправности датчика устраняются путем несложного ремонта, после которого сцепление будет вновь работать плавно и без рывков.

Другая ситуация: при переключении передач автомобиль немного дергается, а при трогании с места может заглохнуть. В чем может быть причина? Чаще всего в этом виноват клапан задержки сцепления. Этот клапан обеспечивает определенную скорость, при которой может схватываться маховик, независимо от того, насколько быстро была «брошена» педаль сцепления. Для начинающих водителей эта функция необходима, т.к. клапан задержки сцепления предотвращает чрезмерный износ поверхности диска сцепления.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]